
The goal of clinical and behavioural neuroscience is to 
observe and to understand nervous system mechanisms 
to manipulate behaviour-related neural processes and to 
restore or enhance function. Neurofeedback is a type of 
biofeedback in which neural activity is measured, and 
a visual, an auditory or another representation of this 
activity is presented to the participant in real time to 
facilitate self-regulation of the putative neural substrates 
that underlie a specific behaviour or pathology (FIG. 1). 
Neurofeedback began with experiments showing that 
humans could self-control electroencephalographic sig-
nals in real time1. These experiments led to the develop-
ment of the field of brain–machine interfaces (BMIs), also 
called brain–computer interfaces (BCIs)2, in which indi-
viduals aim to directly regulate external devices instead 
of neural substrates.

In neurofeedback, brain activation is volitionally reg-
ulated through learning; as the activation acts as an inde-
pendent variable, it allows causal inferences to be made 
between brain activity and behaviour. The different 
behavioural changes that have been observed to result 
from self-manipulation of neural activation indicate 
that the physiological consequences of neurofeedback 
may be considered to be a form of endogenous neural 
stimulation3. Thus, neurofeedback has been used to 
modulate behaviourally relevant functional networks3–6 
and to provide self-administered therapy7,8. Concerns 
have been expressed about how the rapid attempts to 
use neurofeedback for clinical rehabilitation and therapy 
have outpaced the development of a proper understand-
ing of the neural mechanisms and neuroplastic changes 
that underlie neurofeedback. The failure of some clinical 

trials9,10 to show that neurofeedback can have treatment 
effects after promising preliminary studies further 
emphasizes the need to delineate neurofeedback mech-
anisms. In this Review, we describe the progress that has 
been made in understanding these mechanisms by syn-
thesizing developments across neuroimaging modalities 
and applications in cognitive and clinical neuroscience.

Neural specificity and plasticity
Traditional functional neuroimaging establishes correl-
ative relationships between brain activity and behaviour. 
By contrast, neurofeedback that involves functional neu-
roimaging enables the manipulation of neural activity 
in circumscribed regions, functional connections and 
spatiotemporal activity patterns as independent var-
iables, and thus represents a way of investigating the 
relationship between brain activity and behaviour that 
is comparable to brain stimulation (BOX 1; FIG. 1). In this 
section, we discuss examples of self-regulation of neu-
ral activity with a focus on how learning self-regulation 
leads to specific neural and behavioural changes.

The neural substrates of self-regulation. Animal exper-
iments that have monitored neural activation have 
provided the most fine-grained evidence that neural 
activity can be self-regulated in the context of BMIs and 
neurofeedback. For example, a study showed that mon-
keys could be trained to voluntarily increase or decrease 
the firing rate of neurons in the frontal eye field using 
auditory feedback and juice rewards11. During feed-
back training, the monkeys received auditory feedback 
of pure tones with a pitch that was proportional to the 
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Biofeedback
It provides an explicit indicator 
of some physiological process, 
such as heartbeat or brain 
activation, so that an individual 
can attempt to regulate that 
activation or guide behaviour.

Brain–machine interfaces
(BMIs). Brain–machine 
interfaces, sometimes called 
direct neural or brain–
computer interfaces, are direct 
communication pathways 
between the brain and 
external devices.
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Abstract | Neurofeedback is a psychophysiological procedure in which online feedback of neural 
activation is provided to the participant for the purpose of self-regulation. Learning control over 
specific neural substrates has been shown to change specific behaviours. As a progenitor of 
brain–machine interfaces, neurofeedback has provided a novel way to investigate brain function 
and neuroplasticity. In this Review, we examine the mechanisms underlying neurofeedback, 
which have started to be uncovered. We also discuss how neurofeedback is being used in novel 
experimental and clinical paradigms from a multidisciplinary perspective, encompassing 
neuroscientific, neuroengineering and learning-science viewpoints.
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Synchronization
Simultaneous oscillations of 
membrane potentials in a 
network of neurons that are 
connected with electrical 
synapses.

Biomarkers
Biological features (physical, 
physiological or behavioural) 
that act as robust predictors of 
one or more experimental or 
clinical outcomes.

Coherence
A measure of how stable the 
frequency and/or phase 
relationship is between two 
neural sites; it reflects the 
amount of information that is 
shared between two sensors or 
channels.

instantaneous firing rate of the multiunit activity at the 
recording site of the frontal eye field. Increasing neuro-
nal activity in this oculomotor area improved visual 
attention but not oculomotor preparation, revealing 
a specific association of voluntarily controlled neu-
ral activity. Recent research showed that mice could 
gain control of spike-related calcium signals, which 
were recorded with two-photon imaging in motor and 
sensory cortices12, and that learning was associated 
with changes in neural firing at fine spatial locations. 
Recently, human BMIs have shown that learned control 
of multiple neurons can operate different types of exter-
nal devices to facilitate communication and motor con-
trol in people with paralysis. For example, on the basis 
of activity in the primary motor cortex (M1) recorded 
from intracortical multielectrode arrays, individuals 
with partial paralysis were able to learn coordinated 
movements of a seven degrees-of-freedom robotic 
arm13, to control a computer cursor14 or to functionally 
stimulate muscles15.

Neurofeedback has been used to self-regulate electro-
encephalography (EEG) amplitudes, which correlate with 
the degree of intracortical neuronal synchronization16. 
Indeed, neurofeedback-mediated reductions in parie-
to-occipital EEG amplitudes boosted visual attention17 or 
curbed mind-wandering18, and neurofeedback-mediated 
increases in intracortical neuronal synchronization elic-
ited improvements in tasks requiring internal processing, 
such as mental rotation19 or musical performance20.

Functional MRI (fMRI)-based neurofeedback that 
involved learning to increase or decrease activity in dis-
tinct cortical and subcortical regions of interest (ROIs) 
has been used to modulate behaviour. For instance, 
upregulation of activity in M1 (REFS 21,22), the dorsolat-
eral prefrontal cortex (dlPFC)23 and the anterior insula24 
was associated with improved motor performance, 
working memory and arousal to emotional pictures, 

respectively. Moreover, one study showed that neuro-
feedback-mediated downregulation of anterior cingulate 
cortex (ACC) activity was associated with a decrease in 
cigarette cue craving25.

Recent neurofeedback studies have combined 
electro physiological and haemodynamic brain signals 
in innovative ways to make the most of their respective 
advantages. For example, one study trained participants 
on less expensive, portable EEG after initially calibrating 
the location of the signal with spatially precise fMRI of the 
amygdala26 (this approach is innovative, as EEG by itself 
cannot determine where activation occurs in deeper brain 
regions such as the amygdala). The participants down-
regulated the EEG correlates of amygdala blood-oxygen-  
level-dependent (BOLD) activation in the presence of 
visual stimuli. The authors found that improved down-
regulation with EEG-based neurofeedback was directly 
related to downregulation of the amygdala BOLD signal 
and that the self-regulated activity resulted in improved 
control of negative emotions. In contrast to this serial 
approach to multimodal neurofeedback, fMRI and EEG 
information can be presented simultaneously as two 
independent signals27 to take advantage of the dynamic 
properties of the electrophysiological signal and the spa-
tial specificity of the haemodynamic imaging modal-
ity. Similarly, functional near-infrared spectroscopy 
(fNIRS) has been combined with EEG in neurofeedback 
to improve sensory motor rhythm control by benefiting 
from the complementary information available in the two 
signals in classifying brain states28. Classification accuracy 
increased by 5% with the combined signals compared 
with the EEG signal alone.

One of the key advantages of non-invasive imaging 
in neurofeedback is that it allows the feedback of neu-
ral activation to be measured over an entire network 
of distributed brain regions that are involved in a spe-
cific function from spatiotemporal pattern of brain 
activations3,4,29–32. Biomarkers of pathological changes in 
dynamic interactions between brain areas (that is, func-
tional brain networks33) that underlie psychiatric and 
neurological disorders (BOX 2) could be potential targets 
for neurofeedback training. Thus, the ability to modulate 
neural dynamics on a network level with neurofeedback 
may be a more effective method of neural regulation than 
neurofeedback involving a single area or anatomically 
unspecific pharmacological interventions.

The correlated activation of two neural substrates 
is termed ‘functional connectivity’ in haemodynamic 
modalities and ‘coherence’ in electrophysiological terms. 
One recent study examined functional connectivity-based 
neurofeedback and ROI-based neurofeedback in heavy 
smokers8. The performance of ROI-based feedback in 
anterior brain regions (comprising the ACC, medial PFC 
and orbital frontal cortex) and the posterior brain regions 
(comprising the posterior cingulate and precuneus) — 
all brain areas related to craving — were compared with 
functional connectivity-based feedback involving the 
same anterior and posterior regions. The study found 
greater volitional control with connectivity feedback 
than with activity-based feedback, but, more importantly, 
reductions in craving scores were better correlated with 
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functional connectivity outcome scores than ROI activity. 
A change in functional connectivity, from a negative cor-
relation before neurofeedback training to a positive cor-
relation after training, was observed to last for more than 
2 months between the lateral parietal cortex and the pri-
mary motor area, regions that belong to different intrinsic 
networks (that is, the default mode network (DMN) and 
the visuo–spatial–motor network, respectively33). This 
study demonstrates that neurofeedback is able not only to 
alter connectivity between two functionally distinct brain 
networks but also to exert long-term effects.

Network reorganization resulting from neurofeedback 
training of single regions was observed in earlier stud-
ies34,35, whereas recent studies have attempted neurofeed-
back training of functional connectivity between brain 

regions. For example, in one study, participants were 
trained to be able to alter the level of interhemispheric 
motor cortical coherence through the use of contingent 
magnetoencephalography-based neurofeedback, lead-
ing to proportional changes in asynchronous finger tap-
ping36,37. Moreover, connectivity-based neurofeedback 
training has recently been used to increase subjective 
emotional valence ratings by strengthening top-down 
connectivity from cognitive control areas in the dorso-
medial PFC to the amygdala, which is involved in emotion 
processing38.

Multivariate pattern analyses (MVPAs) afford more sen-
sitive detection of distributed patterns of brain activity 
corresponding to specific sensory, behavioural or mental 
processes29–31,39. Patterns of voxel activity in circumscribed 

Figure 1 | Overview of the procedure of neurofeedback. Neurofeedback begins with observation of neural activity. 
Electrophysiological methods to detect such activity include electroencephalography (EEG), magnetoencephalography 
(MEG) and invasive electrocorticography (ECoG), and haemodynamic imaging methods for detecting neural activity 
include functional MRI (fMRI) and functional near-infrared spectroscopy (fNIRS). The grids on canonical neural tissues 
provide a qualitative reference for the relative spatial resolutions of the various imaging technologies. Sample signals that 
are extracted from both types of these sensor channels provide a qualitative representation of the difference in temporal 
resolution. Electrophysiological and haemodynamic signals can be processed in similar ways. Univariate approaches 
extract a signal from a single channel or region of interest, for example, an evoked potential. Calculation of coherence or 
connectivity between two channels as a measure of functional connectivity is another common feedback method. 
Features from a set of sensors, such as the power at a frequency window or the level of activation, can be classified as 
multivariate patterns of activity (MVPAs). The calculated signal is then presented to the individual via visual, auditory72, 
haptic139 or electrical stimulation210 feedback, allowing the user to alter neural function and complete the loop with neural 
processing of feedback. The advantages and disadvantages of these modalities, as well as how their signals are processed 
for neurofeedback, are discussed in BOX 1. FFT, fast Fourier transformation. 
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Adaptive neurofeedback
Previously, and perhaps 
imprecisely, referred to as 
‘closed-loop’, adaptive 
neurofeedback changes an 
experimental task in real time 
on the basis of neural activity.

regions have been found to distinguish visual orienta-
tions40 and motor sequences41, whereas averaged voxel 
activity in those regions does not provide useful infor-
mation. In neurofeedback, MVPA was initially used in 
fMRI-based studies32 but is now also being applied to 
electrophysiological neurofeedback methods42. In a sem-
inal neurofeedback investigation in which perceptual 
learning of grating orientations was induced in the pri-
mary visual cortex3 individual orientation columns were 
below the resolution of fMRI but could be detected from 
subthreshold population activity using an MVPA40. In 
the absence of visual stimulation except for a neurofeed-
back signal, participants learned to self-induce patterns 
of activity in the primary visual cortex that corresponded 
to a particular orientation of a Gabor grating. The par-
ticipants received visual feedback of the correspondence 
between the brain activity patterns and the desired brain 
state (but not the actual stimulus). Increased correspond-
ence paralleled perceptual learning of the specific orien-
tation, providing an example of the behavioural specificity 
of neurofeedback training. In another innovative applica-
tion of such adaptive neurofeedback6, an MVPA was used to 
decode whole brain states associated with sustained atten-
tion while participants performed a cognitive task. The 
level of difficulty of this task was automatically adjusted 
based on the decoded brain state to improve vigilance. 
The task-relevant representations in attentional networks 

in the brain showed more distinctive and focused activity 
after neurofeedback training43. In summary, MVPA neu-
rofeedback studies have provided convincing evidence 
of specific causal brain–behaviour relationships, but the 
underlying neurophysiological mechanisms of the brain 
state being regulated require further exploration.

Neural plasticity and specificity. The persistence of func-
tional reorganization of the brain after the termination 
of neurofeedback training is an indicator of neuroplas-
ticity. The specificity of the trained neural substrate was 
first noted in a study involving non-human primates44, 
which showed that the regulation of single-cell firing in 
the motor cortex could be learned. The local specificity 
of learned physiological regulation at the microscopic 
level was later confirmed by a series of impressive experi-
ments in which rats were rewarded for increasing the fir-
ing rate of a cell in the motor cortex and simultaneously 
decreasing the firing rate of an adjacent cell45. Another 
study in rats showed that neurofeedback could be used to 
induce selective temporal coherence between neurons in 
M1 and in the dorsal striatum46. In a study in monkeys, 
an electronic implant, called NeuroChip47,48, used action 
potentials recorded in one location of the motor cortex to 
trigger electric stimulation delivered at another location in 
the motor cortex. After 2 days of continuous stimulation, 
the activity at the recording site resembled the activity at 

Box 1 | Neuroimaging methods of neurofeedback

Real-time functional neuroimaging includes electrophysiological and 
haemodynamic methods that represent the same underlying neural 
activation158. Electrophysiological signals159, which directly measure 
extracellular field potentials, are measured by electrocorticography 
(ECoG), electroencephalography (EEG) or magnetoencephalography 
(MEG). These approaches have relatively high temporal resolution (~1 ms). 
Measurements from ECoG electrodes, which are placed on the cortical 
surface, have relatively high spatial resolution (~5 mm2), whereas 
non-invasive MEG and EEG can cover the entire cortex, albeit with 
reductions in resolution (10 mm2 (REF. 160) and 5 cm2 (REF. 161), 
respectively). Neurofeedback studies in animals have used single-unit 
activity at a spatial resolution of ~0.05 mm, multiunit activity at ~0.1 mm 
and local field potentials at ~0.5 mm, and all at a very high temporal 
resolution of ~3 ms (REFS 162,163). In real-time analysis, the signal that is 
extracted from these methods is typically transformed into the frequency 
domain and decomposed into a specific frequency (for example, delta 
(0–4 Hz), theta (4–7 Hz), alpha (8–12 Hz), beta (12–30 Hz) and gamma 
(>30 Hz) bands) before feature extraction. Examples of feature extraction 
include coherence, power spectral density and their combinations for 
input to multivariate patterns, event-related potentials and slow cortical 
potentials. The signals can be processed either in sensor space (that is, 
individual electrodes) or source space (for example, beam formers164 or 
LORETA165) that enables a more accurate estimate of the activity in 
cortical regions that then is transformed into the feedback signal165.

Most haemodynamic methods of neuroimaging detect the 
concentration of oxygenated and deoxygenated haemoglobin in the 
neural vasculature, are reflective of the metabolic demands of the 
underlying neural activation and are more closely related to 
postsynaptic activity and field potentials than action potentials158,166. 
The relatively slow response of blood oxygenation to neuronal activity 
is known as the haemodynamic response function (HRF). The HRF peaks 
at about 5 seconds after stimulus onset (FIG. 1). The HRF is detected by 
functional MRI (fMRI) as the blood-oxygen-level-dependent (BOLD) 

signal over the whole brain, with a spatial resolution typically of up to 
2 mm3. The spatial specificity, also known as the point spread function 
of the BOLD signal, as obtained by fMRI, is around 2 mm (REF. 167), a 
value that may be improved by suppressing macrovascular signals and 
contrasting different experimental conditions appropriately. The 
regions of interest (ROIs) are initially selected using a ‘localizer’ scan, 
which is based on anatomical or functionally defined voxels. Another 
type of haemodynamic acquisition, functional near-infrared 
spectroscopy (fNIRS), measures infrared light absorption of 
haemodynamic signals in the brain by scalp optodes at a spatial 
resolution of 2–5 cm2 (REF. 168). The fNIRS signal is acquired by multiple 
pairs (channels) of emitter and detector optodes. Feature selection 
includes a summary activation from selected ROIs that are then used 
alone, as seed regions in functional connectivity, or used as features in 
multivariate pattern analyses. Feedback in electrophysiological or 
haemodynamic imaging modalities can be based on visual, haptic, 
electrotactile and/or auditory displays. EEG and fNIRS are portable and 
lowest in cost, whereas MEG and fMRI require more-sophisticated 
equipment with shielded rooms and are priced accordingly.

There is evidence of correspondence between electrophysiological and 
haemodynamic imaging modalities. For instance, intrinsic networks (for 
example, sensorimotor, visual and default-mode) that are derived from 
haemodynamic BOLD fluctuations seem to spatially overlap with those 
of MEG power envelopes169,170. This overlap extends to the temporal 
domain, in which coherence between fMRI and EEG power peaks 
between 0.01 and 0.1 Hz (REF. 171), generally revealing positive and 
negative correlations between BOLD and high- and low-frequency EEG 
rhythms, respectively172,173. Moreover, as a result of phase–amplitude 
coupling174,175, BOLD fluctuations can also be directly related to the 
phase (rather than to the power) of EEG slow cortical potentials176. 
Despite these commonalities, the level of correspondence of neural 
activation between modalities varies between regions or networks172 and 
has yet to be fully clarified.
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Fractional anisotropy
A property of white matter 
pathways of the brain that 
relates to the diffusion of water 
molecules along axonal 
pathways and is measured by 
diffusion tensor imaging; it is 
represented by a value ranging 
from 0, indicating no specific 
directionality, to 1, indicating 
one prominent directionality.

Homeostatic plasticity
The capacity of neurons to 
regulate their own excitability 
relative to network activity; it is 
observed in neurofeedback as 
an opposite and paradoxical 
change in brain activity after 
the training.

the stimulation site, showing that functional reorganiza-
tion had occurred in vivo; this functional reorganization 
remained for more than a week after stimulation was ter-
minated. Importantly, long-term (neuroplastic) changes 
occurred only when the duration between recording and 
stimulation was less than 50 ms (BOX 3).

At the level of large cell assemblies, there is abundant 
evidence indicating that neurofeedback can have spe-
cific neural effects. Comparable to invasive recordings, 
local neuroanatomical specificity in the modulation of 
EEG in healthy adults has been described49. In fMRI-
based neurofeedback, an MVPA and an effective con-
nectivity analysis that were performed on fMRI signals 
acquired during training of the anterior insula showed 
that learning self-regulation results in a gradual reduc-
tion in the spatial extent of activation clusters (‘pruning’) 
in the brain and in an increase in the separation of these 
clusters (‘focusing’)43. Similar cortical changes have been 
observed with extensive practice and learning of com-
plex cognitive tasks50, such as verbal learning, mirror 
reading, motor learning and artificial grammar learn-
ing. However, as cognitive strategies activate a network 
(see below), neural specificity can be experimentally 

addressed using control conditions such as oppos-
ing directions of regulation37, differential feedback51, 
inverted feedback52, sham feedback53, mental imagery 
without any feedback53 or feedback from a different 
neural substrate54.

Neurofeedback-induced neuroplasticity, in the form 
of cortical excitability changes, has been demonstrated 
in humans by using transcranial magnetic stimulation 
(TMS) on the trained brain region55,56. TMS pulses were 
applied to the motor cortex to measure motor-evoked 
potentials after learned self-regulation, without regu-
lation or under other control conditions to probe for 
neuro plastic changes in the strength (that is, the excit-
ability) of the corticospinal pathway. It was discovered 
that neurofeedback was associated with sustained (that 
is, lasting more than 20 min) decreases in intracorti-
cal inhibition following single55 or repeated56 training 
sessions.

Structural changes in grey matter volume and white 
matter connectivity, previously used to reveal neuroplas-
tic changes resulting from different forms of skill train-
ing50,57, have also been examined now in neuro feedback. 
Increases in fractional anisotropy in white matter path-
ways and grey matter volume were found 1 week after 
the neurofeedback training of beta waves (15–18Hz) in 
the frontal and parietal regions of the brain58. The struc-
tural changes were associated with large improvements 
in visual and auditory attention after training in the 
experimental group.

Are the resulting neuroplastic changes from neu-
rofeedback predictable and stable? A concept found 
in the EEG neurofeedback literature challenges simple 
models of Hebbian plasticity. Evidence for homeostasis 
in neural activity (such as, firing rate and synchroniza-
tion) has been noted in some neuroimaging studies with 
such measures remaining in physiologically confined 
ranges59,60. In these studies, Hebbian plasticity was coun-
terbalanced by (non-Hebbian) homeostatic plasticity that 
seemed to prevent extremes in excitation or inhibition. 
Remarkably, there is emerging evidence for homeostatic 
reversal or ‘rebound’ of neural function after neurofeed-
back training61. For instance, after undergoing alpha 
desynchronization neurofeedback, individuals with 
post-traumatic stress disorder showed a rebound in EEG 
synchronization62, which may be explained by the fact 
that such individuals present with abnormally decreased 
alpha power at baseline. However, it is not clear to what 
extent homeostatic plasticity affects long-term changes 
in brain activity and behaviour, as evidence exists for 
such changes after periods of days63, months33,64 and even 
years after training65. Further research may shed light on 
the interaction between homeostatic and Hebbian forms 
of plasticity in the context of neurofeedback.

Neurofeedback training may not always result in 
behavioural modifications. Studies in monkeys showed 
that the response of neurons in the motor cortex to 
operantly learned rewards are initially associated with 
active limb movements, but, as the monkey continues 
to activate the reward-linked neurons, the movements 
drop out entirely66,67. Further investigations should 
resolve the two alternative explanations for this cessation 

Box 2 | Network models of neuropsychiatric disorders

In recent years, there has been a major shift in how neuropsychiatric disorders are 
conceptualized: from a largely categorical perspective using descriptive diagnostic 
criteria to an approach that is based on observable behavioural and neurobiological 
characteristics (that is, an ‘experimental medicine’ approach embodied by the Research 
Domain Criteria177). According to this framework, many neuropsychiatric disorders are 
thought to share common, transdiagnostic disease mechanisms that are often 
represented in a set of brain regions and networks that may be disrupted in space178 and 
time179 as a function of the disorder across its lifespan.

Complementing this shift in neuropsychiatry, ‘connectomics’ is emerging as the 
predominant scientific philosophy for understanding human brain function and 
dysfunction180. Even what seems to be a localized brain damage (for example, isolated 
stroke) can have downstream effects on entire brain networks181. An example of one 
such model of network-based pathology is the ‘triple network model’ of 
neuropsychiatric disorders178. Dysfunction in three large-scale brain networks (the 
default mode network (DMN), the executive control network (ECN) and the salience 
network (SN)) seems to be crucial for the development and maintenance of a series of 
neuropsychiatric disorders, including schizophrenia178, Alzheimer disease182 and 
addiction183,184. The DMN includes a set of midline (the medial prefrontal cortex and the 
posterior cingulate cortex) and lateral (parahippocampal gyrus) brain networks that 
have been implicate d in internal self-referential processes (rumination, and episodic 
and prospective memory). The ECN includes lateral (the dorsolateral prefrontal cortex 
and the posterior parietal cortex) brain networks that govern external responses to the 
environment to organize and execute complex goal-directed behaviours. Activity in the 
DMN and ECN seems to be anti-correlated and may serve to respond to informa-
tion-processing demands from internal (DMN) and external (ECN) environments. The 
brain system that accounts for allocation of attentional resources and facilitation of 
switching between the DMN and the ECN is the SN, which consists of the anterior 
insula, the dorsal anterior cingulate and, occasionally, the central reward or motivation 
system, including the ventral tegmental area, the nucleus accumbens–ventral striatum, 
the amygdala and the ventromedial prefrontal cortex183.

One research group184 has proposed the use of a composite index termed ‘resource 
allocation index’ to quantify the association between the SN–DMN and the SN–ECN 
and explained how this ‘triple network’ might be affected in the context of 
neuropsychiatric disease. These large-scale brain networks are emerging as potential 
targets for neurofeedback. Training patients to normalize individual nodes, functional 
connectivity or spatiotemporal patterns of activity in order to optimize the 
interactions across these networks could be a potential treatment strategy for 
neuropsychiatric diseases.
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Operant conditioning
A process by which an 
organism learns a new 
association between two 
paired stimuli: a neutral 
stimulus and one that already 
evoked a reflexive response.

of movement: one states that the movement drops out 
owing to pruning, whereas the other states that it stops 
because of the decoupling of the association between 
neural activity and movement; the latter suggests that 
motor circuits exert independent effects on driving cell 
activity and generating limb movements67. Future inves-
tigations should investigate these hypotheses in light of 
the evidence indicating that neurofeedback-induced 
changes in neuroplasticity may persist and lead to long-
term behavioural improvements in humans64.

Neural mechanisms of self-regulation
Despite its promise, neurofeedback faces several chal-
lenges, including the failure of some individuals to 
achieve self-regulation, inter-individual differences 
in learning capacity, uncertain long-term effects and 
unclear transfer benefits. Indeed, a substantial propor-
tion — up to 30% — of participants in neurofeedback 
and BCI studies fail to self-regulate specific brain activity, 

even after repeated training68,69. Better knowledge of the 
neural mechanisms underpinning self-regulation will 
likely assist in the design of more-efficient experimen-
tal and clinical protocols, tools and technologies for 
neurofeedback, and in developing greater knowledge of 
neurophysiology. In this section, we address the psycho-
physiological factors that influence learning, the func-
tional and structural brain mechanisms of self-regulation, 
and the theoretical models of learning and memory that 
can be applied to neurofeedback training.

Factors influencing neurofeedback learning. Learning 
to control brain activity in humans is determined by 
contingent feedback and reward, and potentially by ver-
bal instructions and mental strategies (for example, use 
of imagery) that are suggested by the experimenter to 
the participant (BOXES 3,4). In an attempt to compare the 
influence of the above-described factors on learning to 
control brain activity and behavioural effects, a recent 
study examined four groups of participants who were 
given feedback, explicit instructions, reward or all these 
factors over 2 days of neurofeedback training to voli-
tionally control the BOLD signal in the bilateral supple-
mentary motor area (SMA)70. The members of the group 
that received only feedback achieved marked increases 
in BOLD signal amplitudes and learning effects in terms 
of percentage BOLD change over the training period. 
Although the group members who were given both 
feedback and reward showed the highest signal ampli-
tudes in the SMA, they did not show any learning effect. 
Remarkably, the two groups who were instructed to use 
motor imagery and received feedback (with or without 
reward) did not show learning effects after the 2 days 
of training. These results suggest that contingent feed-
back without explicit instructions to use specific mental 
imagery enables more effective learning. Further com-
parison studies of this kind in different brain regions and 
pertaining to different brain functions would be neces-
sary to establish the influence of feedback, reward and 
instructions in learning brain self-regulation.

A recent EEG neurofeedback study that investigated 
the effects of different mental strategies on neurofeed-
back performance71 trained participants to use any men-
tal strategy of choice to increase sensorimotor rhythm 
(SMR) activity. Participants who reported no specific 
strategy showed better SMR control than participants 
who reported specific mental strategies. These results 
indicate that successful SMR control was not related to 
the use of explicit, verbalizable mental strategies.

If implicit learning can help regulate brain activation, 
is any explicit strategy needed at all? Recent research 
aimed to answer this question by intentionally not pro-
viding any explicit strategy and eliminating any possi-
bility for subjects to become aware of the neurofeedback 
signal. Researchers provided two types of auditory sig-
nals that varied in proportion to the BOLD activity in 
two circumscribed brain areas, the fusiform face area 
and the parahippocampal place area. Individuals were 
instructed to perform a task that was unrelated to neu-
rofeedback: to press two different buttons depending on 
the type of the auditory signal72. After 3 days of training, 

Box 3 | Neurobiology of learning

To understand the specific mechanisms that underlie neurofeedback learning, one 
needs to first understand the general theoretical and experimental bases of learning. 
Operant conditioning (that is, instrumental learning or reinforcement learning) and 
classical conditioning (that is, Pavlovian conditioning) are two major types of 
associative learning. Hebb185 hypothesized that, if the activity in a presynaptic neuron 
repeatedly led to the firing of a postsynaptic neuron, an enduring modification of the 
synaptic structure follows, such that subsequent activity of the presynaptic neuron 
has a high probability to excite the postsynaptic neuron (‘neurons that fire together 
wire together’). Extant literature holds that long-term potentiation (LTP) is a central 
mechanism underlying associative learning186. Recent research has focused on a form 
of LTP called spike timing-dependent plasticity (STDP)187. According to STDP, a 
modification in synaptic transmission occurs owing to variations in the timing of 
weak and strong synaptic inputs over tens of milliseconds. For some inputs, 
transmission increases — that is, a presynaptic response produces a stronger 
(‘potentiated’) postsynaptic response — and, for others, the transmission decreases 
(‘depresses’) postsynaptic responses. In essence, STDP depends on the sequence of 
firing times of the presynaptic and postsynaptic neurons.

Dopamine is an intermediary that relates STDP to behavioural changes by gating 
plasticity at corticostriatal and cortical synapses. However, opposing evidence and 
conceptual arguments suggest that LTP is not sufficient or even not involved in 
association formation188. Studies conducted in behaving mammals to relate the 
experimentally evoked LTP and activity-dependent changes in synaptic strength show 
that hippocampal synapses are selectively modified in strength during the acquisition 
of classical conditioning but not of instrumental conditioning, whereas striatal regions 
are activated during instrumental conditioning but not during classical conditioning189. 
In both of these two types of learning, NMDA receptors, other neurotransmitters and 
transcription factors participate.

Prediction error is a cardinal concept in associative learning that is defined as the 
difference between expected and actual rewards190. The prediction error that is 
generated by an outcome, for example, the juice reward in an animal neurofeedback 
experiment, is a measure of how unexpected or surprising the outcome is with 
respect to an expected signal. This error signal is communicated to the striatum and 
cortical areas. Dopaminergic neurons respond with short-latency plastic bursts to 
unexpected rewards and reward predicting stimuli191 in proportion to the reward 
prediction error signal192,193.

Learning results from the concurrent occurrence of a strong presynaptic and 
postsynaptic activation and dopamine release194. According to this postulation, which is 
called ‘three factor learning’, synaptic transmission is strengthened only in those 
neurons that simultaneously receive input coding some aspect of an event in the 
environment and dopaminergic input proportional to the reward prediction error195. 
Hence, on the basis of contingent feedback, dopaminergic projections to the striatum 
are able to modify behaviour in response to salient stimuli and contingent feedback.
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10 of the 16 participants exhibited an average increase in 
activity in the upregulated region relative to the downreg-
ulated region, and this change correlated with spontane-
ous activity within this subset of participants. No effect 
of learning was observed between sessions. Further study 
is needed to confirm whether this ‘covert feedback’ can 
induce neurofeedback-mediated learning and to confirm 
the hypotheses regarding the sufficiency of automatic 
processing of the neurofeedback reward signal3,73.

Contrary evidence from other studies supports the 
notion that explicit instructions to perform mental 
imagery may be necessary to control the neurofeedback 
signal. For instance, one study showed that simultane-
ous control of ongoing brain activity in the SMA and 
the parahippocampal cortex was not initially feasible 
when participants used their own mental strategies51. 
Indeed, self-regulation was possible only when the 
experimenters suggested the strategies that were related 
to the functional role of the ROIs. Conflicts in older 

EEG neuro feedback literature can be found regarding 
whether mental strategies or no strategies at all lead to 
the most successful control of the feedback signal74–77.

An interesting case illustrating the complexity of con-
trol strategies comes from a recent set of studies investi-
gating the mesolimbic dopaminergic system. One study52 
found that cognitive strategies activated the midbrain and 
that neurofeedback further enhanced midbrain activity, 
but self-regulation was not effective during the ‘transfer’ 
session when participants attempted to perform voli-
tional control in the absence of feedback. Similar results 
were found for self-regulation of the nucleus accum-
bens, which is part of the same network78. However, 
recent work79 used feedback from both substrates sepa-
rately — that is, one region encompassing the midbrain 
and the other comprising the nucleus accumbens — for 
two different groups of healthy participants and found 
conflicting results. Both groups could not activate these 
regions without feedback initially, and only the midbrain 

Box 4 | Models of neurofeedback learning

Here we present extant theories and models that have been proposed to 
explain neurofeedback learning and its underlying mechanisms. There are 
overlaps and compatibilities among the theories; for example, the 
operant (or instrumental) learning theory can be considered to form a 
part of the dual process view, and motor learning and skill learning 
theories may have commonalities, whereas the global workspace theory, 
which presupposes the conscious awareness of reinforcement (feedback) 
for learning, seems to be compatible with some aspects of the awareness 
theory. Future, hypothesis-based experiments should shed new light on 
the validity of the above-mentioned theories in neurofeedback learning 
and performance.

Operant (or instrumental) learning
The operant learning theory196, as applied to neurofeedback, states that 
control of brain activity proceeds when correct or desired brain responses 
are reinforced by contingent feedback and/or reward67,197. The theory 
considers three main elements in its description of the procedure, 
discriminative stimuli, responses and reinforcers. A large extant literature 
of operant learning in humans and animals has elucidated the 
neurophysiological correlates of operant learning and highlighted the 
selective involvement of prefrontal and striatal synapses189,198. However, 
experimental instructions and subjective reports of the use of mental 
strategies in human studies have led some researchers to propose other 
explanatory mechanisms of neurofeedback learning.

Motor learning
According to this model199, acquiring control over neurophysiological 
signals is similar to the acquisition of motor learning involving a 
well-organized sequence of movements and symbolic information. 
Although there has been much scientific and clinical investigation of this 
theory in different types of motor learning200, there is no specific 
application of this model to neurofeedback training in recent times.

Dual process theory
The dual process theory attempts to integrate feedforward and feedback 
learning processes in explaining neurofeedback learning201,202. In this 
model, the naive learner searches for an effective mental strategy, either 
on their own or based on the experimental instructions. If the learner 
does not find the strategy to be effective to control the feedback signal, 
they may search for a new one until an effective strategy is discovered. 
Upon successive reinforcement, the strategy that best matches the 
feedback may become automatic. Alternately, the learner may never 
learn to find an effective strategy, upon which the brain may rely on the 

feedback signal alone to guide learning, or the subject may fail to learn at 
all. An experimental investigation of this hypothesis would involve 
neurofeedback training in the presence or absence of explicit instructions 
for attaining control while monitoring participants’ reports of mental 
strategies that are used and their brain and behavioural correlates.

Awareness theory
The awareness theory competes directly with the instrumental learning 
model in biofeedback literature203. The theory states that the feedback 
signal provides information about a physiological response (that is, brain 
activity) to which the subject becomes aware of, and this leads to 
voluntary control over the response. The model considers three elements, 
awareness of reinforcers (feedback and reward), the reinforcer response 
contingency and the response itself. However, theoretical analyses and 
later tests in animals and humans concluded that awareness of the 
response is neither necessary nor sufficient to acquire control over the 
brain activity203.

Global workspace theory
The global workspace theory of neurofeedback learning61 proposes that 
learning control of neural activity is enabled by the wide, global 
distribution of the feedback signal in the brain so that it becomes 
conscious. A testable prediction of this theory is that a non-conscious or 
subliminal feedback signal, for example, by backward masking, does not 
help in acquiring control of the brain activity being trained61. However, 
the hypothesis should also be evaluated in light of the existing evidence 
for subliminal instrumental learning204, unconscious processing of 
reward stimuli205, and the distinctions between conscious and 
non-conscious representations on the one hand, and automatic and 
deliberate processing on the other206.

Skill learning
Recently, there have been proposals to view neurofeedback and brain–
computer interfaces (BCI) or brain–machine interfaces (BMI) learning45,207 
within the framework of cognitive skill learning208,209. According to this 
proposal, neurofeedback learning involves an initial phase of rapid 
change in performance and a late phase of more gradual improvement209 
as the skill is consolidated and performance asymptotes. Functional and 
structural changes in the dorsomedial striatum have been shown to be 
associated with the early phase, whereas such changes in the dorsolateral 
striatum have been shown to be associated with the late phase. Recently, 
similar changes have been observed in neurofeedback learning in 
animals45 and humans85 (FIG. 2), providing support to this theory.
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Locus of control
A psychological construct that 
determines the subjective 
feeling of being in control.

Sense of agency
The feeling that the individual 
causes the change.

Slow cortical potentials
(SCPs). These are slow 
event-related direct-current 
shifts that can be detected on 
the electroencephalogram. 
Slow cortical potential shifts in 
the electrical negative direction 
reflect the depolarization of 
large cortical cell assemblies, 
reducing their excitation 
threshold.

group could attain self-regulation once feedback was 
provided. Furthermore, the midbrain group was able to 
sustain activation and display self-control into transfer. 
Although there are some differences in methodology 
(such as repetition time, instructed cognitive strategy 
and physiological correction) between the studies, it is 
hard to explain what accounts for the disparities in the 
results. The transfer of neurofeedback learning from the 
laboratory (where the discriminating cues may be pro-
vided but feedback is not available) to real-world condi-
tions (where neither may exist) could be influenced by 
the learning curve during neurofeedback training80. A 
systematic investigation is needed to better understand 
the parameters of neurofeedback training and cognitive 
strategies and how they affect learning.

The effectiveness of neurofeedback learning deter-
mines post-training performance in the transfer session. 
However, further investigations into how transfer is 
influenced by learning procedures, cognitive strategies 
and context are necessary. Other factors that require 
investigation are: the relevance of the instruction; the 
aptitude and cognitive ability of the participants in fol-
lowing the instructions; how much attention is paid to 
the feedback signal; how the signal is presented; and 
the flexibility that is allowed to vary mental strategies in 
conjunction with feedback. The effect of multiple tasks 
may influence neurofeedback control — that is, pay-
ing attention to the neurofeedback signal and imagery 
simultaneously — and some preliminary evidence 
suggests that such multitasking could have deleterious 
effects81. Further hypothesis-driven experimental work 
and theoretical models would shed more light on this 
important issue (BOX 4).

Psychological factors such as the locus of control and 
the sense of agency could influence an individual’s abil-
ity to learn to control brain activity. Studies found that 
the locus of control82 was negatively correlated with the 
power of SMR self-regulation83, leading to the conclu-
sion that instructions should be given to individuals 
undergoing neurofeedback training to avoid forcing 
mastery over self-regulation and to aim for a state of 
focused relaxation. The sense of agency for BMI control 
decreased when the incongruence between the predicted 
and actual sensory feedback was high84. Other factors 
that are likely to affect self-regulation and that require 
more investigation are degree of concentration, mood, 
confidence in control, and motivation.

Neural substrates of self-regulation. An early study 
attempted to elucidate the neuronal mechanisms and 
anatomical sources of self-regulation of slow cortical 
potentials (SCPs)85 using an EEG–BCI simultaneously 
with fMRI acquisition. Successful learning of SCP change 
was associated with the activation of the basal ganglia. 
The study showed that learning SCP control correlates 
with the activation of striatal and motor networks that 
are related to the associative binding of behaviour to 
the reward. These human studies are complemented by 
animal work45,46 demonstrating complete abolition of 
neuro feedback learning with NMDA receptor (NMDAR) 
blockade in the basal ganglia (see below and BOX 3).

Evidence for a ‘neurofeedback control network’ has 
been provided by two recent studies that adopted dif-
ferent approaches. One study examined fMRI correlates 
of brain self-regulation during sham feedback derived 
from prior EEG recordings of some other participants, 
although participants were made to believe that they 
were provided real feedback of their brain activity86. A 
comparison of the sham condition to another condition 
of passive watching of the feedback bars revealed that the 
latter was associated with activation of the bilateral ante-
rior insular cortex (AIC), ACC, SMA, dorsomedial and 
lateral PFC, and superior parietal lobule, suggesting that 
a network exists for the cognitive act of self-regulation. 
Another study conducted a meta-analysis by reanalysing 
data from 12 studies comprising 149 participants who 
performed fMRI neurofeedback with different target 
regions using different mental strategies87. Although 
the latter study was based on fMRI neurofeedback, the 
results were remarkably similar to the aforementioned 
EEG neurofeedback study, as similar activations were 
observed in the AIC, ACC, dlPFC and ventrolateral 
PFC, inferior parietal lobule, basal ganglia and thalamus. 
Previous findings indicate that the PFC and posterior 
parietal cortex are part of the executive control network 
for neurofeedback (BOX 2), whereas the AIC is related 
to the guiding of attention to cognitive strategies and 
feedback error88,89.

Despite these findings, we do not yet know whether 
neurofeedback engages two distinct neural networks — 
one pertaining to the self-regulation of brain activity 
and the other relating to the use of mental imagery of a 
similar task in the absence of feedback — or overlapping 
networks. For example, similar regions are activated dur-
ing neurofeedback control87, as in tasks involving motor 
imagery90, with the exception of the ACC and ventral 
striatum, which are involved in neurofeedback control 
but not motor imagery90. These differences could be 
explained in light of the reward processing that occurs 
with neurofeedback. The ACC is involved in cognitive, 
explicit processing of reward91,92, such as a neurofeed-
back signal. However, the ventral striatum is activated 
even when no awareness of feedback is present72, indi-
cating an implicit role of this brain region in neurofeed-
back processing. These findings indicate that the ACC 
and ventral striatum may have different roles in neuro-
feedback processing along cognitive and automatic lines, 
respectively (FIG. 2).

Brain processes that are involved in learning self-reg-
ulation are beginning to be identified (BOXES 3,4). The 
most compelling evidence for the procedural and 
implicit nature of neurofeedback learning and for the 
crucial role of cortical–basal ganglia loops that are 
responsible for procedural learning comes from a study 
in rodents45. Rats were given food pellets or a sucrose 
solution as a reward when they increased activity in 
one cell ensemble in M1 and decreased activity simul-
taneously in an adjacent ensemble, or vice versa, by 
moving an auditory cursor to one of two target tones. 
With feedback training, rats became proficient in this 
task. Remarkably, omitting the auditory feedback but 
retaining the reward did not influence performance. 
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However, degradation of the food reward contingency 
or degradation of the reward by inducing satiety rapidly 
impaired learning, even if the correct auditory feedback 
was provided. Learning led to increased oscillatory cou-
pling in the 4–8 Hz range between motor cortical cells and 
striatal neurons. In control experiments, rats that lacked 
NMDARs, which are necessary for long-term potentia-
tion, and animals in which NMDARs in the dorsal stri-
atum were blocked pharmacologically showed impaired 
learning. These results demonstrate the essential role 
of striatal neuroplasticity for learning neurofeedback 
contingencies.

Clinical applications of neurofeedback
Whereas neuroscience applications of neurofeedback 
have attempted to elucidate the causal relationship 
between brain and behaviour, clinical applications have 
attempted to exploit neurofeedback for the treatment 
of brain and behavioural disorders. In this section, we 
cover progress and emerging approaches in neurofeed-
back research in the context of one psychiatric and one 
neurological disorder. We examine attention deficit 
hyperactivity disorder (ADHD) because of the better 
understanding of time-frequency domain character-
istics of its neural substrates, the high number of neu-
rofeedback studies that have been performed on this 
disorder and a history of randomized controlled trials 
(RCTs). We then discuss stroke because of the spatial 
localization of its neural substrates and the range of neu-
rofeedback approaches that have been explored for this 

disorder. These cases illustrate the importance in clinical 
neurofeedback research of understanding the effects of 
patient heterogeneity, of identifying the putative neural 
mechanism of disease protocol efficacy and the severity 
of the deficit, and of evaluating how neurofeedback can 
be combined with other treatments.

Attention deficit hyperactivity disorder. The rationale 
for using neurofeedback to treat ADHD emerged from 
early observations that children with learning disabili-
ties93 or ADHD94, in their resting state, showed exces-
sively high amplitudes of low-frequency EEG oscillations 
(for example, delta and theta bands) compared with 
healthy developing children95,96.

In many children with ADHD, these high ampli-
tudes of oscillations can be reduced through the use 
of pharmacotherapy97,98. Seminal work demonstrated 
that neurofeedback could be used to reduce the ele-
vated low-frequency synchronization that is observed 
in ADHD93. Subsequent studies in children showed that 
neurofeedback-mediated decreases in low-frequency 
amplitudes were associated with improvements in 
ADHD symptoms98–100. Some recent RCTs have provided 
evidence that the clinical effect size of neurofeedback 
can be superior to computerized attention training101,102 
or match the one of standard pharmacotherapy103,104. 
Importantly, improvements in the neurofeedback group 
at 6-month follow-up remained larger than those in the 
computerized attention group and were comparable to 
the effects at the end of the training64. These studies, 
among others, were the subject of several meta-analy-
ses105–107, which included hundreds of patients but yielded 
inconsistent findings: one study found that neurofeed-
back treatment was “efficacious and specific” (REF. 105), 
a second claimed that it was ineffective when assessed 
with blinded measures106, and a third concluded that 
neurofeedback treatment was more effective than active 
control conditions107.

Despite the mechanistic findings described above, 
some recent placebo-controlled RCTs could not find any 
difference between neurofeedback training and sham 
neurofeedback training in lowering ADHD scores108,109, 
and these results have led to a debate over the best way 
to evaluate and conduct neurofeedback research110,111. 
Likewise, several RCTs have failed to confirm proto-
col-specific effects112,113, reporting anticipated decreases114 
in low frequencies but also increases9. These outcomes 
highlight two potentially critical issues in neurofeedback 
treatment of ADHD, patient heterogeneity and neuro-
feedback protocol efficacy. In relation to the former, new 
evidence suggests that a mixture of abnormal EEG rest-
ing-state signatures characterizes ADHD97,115–117. Task-
related EEG anomalies in individuals with ADHD have 
also been noted in theta and alpha oscillations115,118,119 
during visual attention115 and in attenuated SCPs during 
anticipatory attention73. Indeed, neurofeedback treat-
ment involving the increase in negative SCP amplitude 
was associated with improved clinical symptoms120–122. 
Interestingly, comparisons between oscillatory and SCP-
based neuro feedback protocols revealed comparable effect 
sizes (0.4–0.7)102,123, thereby leaving an open question 

Figure 2 | Neurofeedback reward processing, control and learning networks. 
Accumulated evidence72,85,86,92,152 indicates the key brain areas that are involved in 
different aspects of neurofeedback. The anterior insular cortex (AIC), dorsolateral 
prefrontal cortex (dlPFC), anterior cingulate cortex (ACC) and posterior parietal cortex 
(PPC) are active during generalized neurofeedback when feedback is presented visually. 
Likewise, deep brain regions such as the thalamus and basal ganglia have been 
implicated in brain self-regulation of different regions of interest. In the case of visual 
feedback, attention to the signal is governed by the lateral occipital cortex (LOC)211. The 
dlPFC212 and PPC213 are involved in performing executive tasks, such as imagery214, which 
connects with the thalamus to regulate cortical arousal215. The ACC and AIC form part of 
the salience network and are involved in conscious perception of feedback and 
reward88,91,92. Unconscious reward processing involves the ventral striatum (VS)72. The 
dorsal striatum (DS) has been linked to neurofeedback learning. Taken together, this 
information suggests that neurofeedback involves a reward processing network 
(comprising the ACC, AIC and VS), a control network (comprising the LOC, dlPFC, PPC 
and thalamus) and a learning network (the DS).
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Fugl-Meyer scores
Performance-based 
impairment index for assessing 
motor functioning, balance, 
sensation and joint functioning 
in patients with post-stroke 
hemiplegia.

as to which approach is ultimately more favourable110. 
Moreover, ADHD neurofeedback research highlights the 
importance of clinical study design, specifically in rela-
tion to placebo control. The placebo effect is heightened 
under numerous conditions related to neurofeedback, 
including seeing a clinician, using expensive, technolog-
ically advanced equipment, being exposed to numerous 
training sessions and having the need to sit still and pay 
close attention124. By contrast, sham feedback used in 
placebos can be detected by participants as false feed-
back, and ethical issues may prevent its use in clinical 
populations. Options such as active control conditions 
(for example, computerized training) might be more 
suitable substitutes92,125 to sham feedback.

Of equal importance is ensuring that the putative neu-
ral mechanisms are accurately identified and validated 
by multiple neuroimaging modalities and experimen-
tal conditions to generate more-efficacious neurofeed-
back protocols. Neuroimaging studies126–128 have shown 
that individuals with ADHD have reduced functional 
independence between task-positive networks and the 
task-negative DMN compared with individuals without 
ADHD; these networks have an anti-correlated relation-
ship during successful spatial attention129 and cognitive 
control130 (BOX 2). By contrast, combined EEG–fMRI 
studies in healthy subjects have found positive correla-
tions between the functional activity of the DMN and the 
amplitude of EEG theta–alpha rhythms (4–12 Hz)131–133. 
Hence, an excess of task-related theta–alpha rhythms115,134, 
which may be reflective of an abnormally upregulated 
DMN, might be one candidate mechanism responsible 
for attentional deficits in ADHD. Interestingly, a recent 
EEG–fMRI study showed that suppressed alpha-rhythm 
amplitudes after neurofeedback training predicted 
reduced mind-wandering and were associated with 
upregulation of task-positive networks and downregu-
lation of the DMN18. Thus, combined EEG–fMRI mark-
ers could inform future neurofeedback protocols based 
more explicitly on inter- or intra-network dynamics.

ADHD is one of the most well-investigated clinical 
neurofeedback applications; however, we still lack defin-
itive evidence of efficacy for neurofeedback-mediated 
treatment of this condition. Although issues such as 
proper control conditions have stymied progress, net-
work-based approaches and the combination of neuro-
feedback with other functional neuroimaging modalities 
may enable further advances in this area.

Rehabilitation in stroke. Neurofeedback has shown recent 
success in the initial RCTs for the use of this application in 
rehabilitation after stroke. The findings from these trials 
underline the importance of understanding the severity 
of the injury and how to combine neurofeedback with 
existing therapeutic approaches. Cases of stroke vary in 
terms of location affected and size of the lesion, but only 
weak associations exist between these anatomical changes 
and symptoms. One of the prevailing models of motor 
recovery in ischaemic stroke is compensatory excitation of 
the contralesional hemisphere that is causing pathological 
disinhibition of transcallosal pathways135. Consequently, 
concurrent stimulation of the lesioned hemisphere 

and inhibition of the non-lesioned hemisphere (that is, 
through the use of TMS) may have beneficial effects on 
recovery136. Active patient participation in the therapy is 
another guiding principle of rehabilitation that is derived 
from studies employing forced use of the affected limb137 
and robotic therapy that minimizes assistance to encour-
age greater patient effort138. One promising avenue for 
stroke rehabilitation involves exoskeletal training that 
uses real-time signals from sensorimotor areas139.

Few RCTs have been attempted for the use of neuro-
feedback on patients with stroke. One RCT compared 
a BCI-augmented robotic arm therapy, based on the 
detection of movement intention with SMR desynchro-
nization by a real-time Bayesian classifier, with a stand-
alone robotic arm therapy140. Both treatment groups 
showed improvements in terms of their Fugl-Meyer 
scores, but there was no marked difference between the 
two groups. Promising evidence of neurofeedback effi-
cacy after stroke has come from a sham-controlled, dou-
ble-blind RCT in severely impaired, chronic (>6 months 
after injury) patients with stroke that took a novel neu-
rofeedback–BMI approach with adjuvant physiotherapy 
(that is, a supplement to normal physiotherapy). Patients 
learned to upregulate ipsilesional sensorimotor areas by 
reinforcing successful mu-rhythm desynchronization 
with robotically assisted hand manipulation141. The 
study compared this treatment to a sham group receiving 
non-contingent neurofeedback and therefore unrelated, 
randomized robotic stimulation. Only the experimental 
group improved ipsilesional mu-rhythm activation, and 
these patients showed a functional improvement of 3.4 
points on the upper-limb Fugl-Meyer scale, representing 
a change from no to some hand movement (the sham 
control group showed no functional improvement). A 
similar approach using SMR-EEG neurofeedback with 
action-observation therapy142 instead of robotic stim-
ulation in a subacute-stroke RCT found a remarkable 
8.1 point improvement in upper-limb Fugl-Meyer score 
relative to controls who used only mental imagery143. 
Patients in the feedback group received continuous 
verbal and motivational feedback from therapists who 
were observing neural activation followed by movement 
of a co-located virtual hand if the trial was a success. 
Although these findings are promising, both the uncon-
trolled placebo effect and the provision of motivational 
feedback from therapists make it difficult to ascertain 
the mechanism of recovery in this trial.

BCI therapy has also been compared with robotic ther-
apy. One study examined the effects of upper-extremity 
robot-assisted rehabilitation versus an EEG-BCI approach 
on the relationship between functional reorganization and 
behavioural outcomes in patients with stroke. Resting-
state fMRI analysis showed that BCI training elicited 
increases in functional connectivity in ipsilesional and 
contralesional motor cortices, the SMA, parts of the visu-
ospatial system and the cerebellum, and that these changes 
were associated with motor recovery144. The goal of such 
BCI studies is to combine neurofeedback with functional 
stimulation to restore lost connections between the brain 
regions that are involved in intention, planning and move-
ment as a behavioural treatment to aid in the transfer of 

R E V I E W S

10 | ADVANCE ONLINE PUBLICATION www.nature.com/nrn

©
 
2016

 
Macmillan

 
Publishers

 
Limited,

 
part

 
of

 
Springer

 
Nature.

 
All

 
rights

 
reserved. ©

 
2016

 
Macmillan

 
Publishers

 
Limited,

 
part

 
of

 
Springer

 
Nature.

 
All

 
rights

 
reserved.



the learned effect to improvements in movement outside 
the laboratory. More evidence is necessary, but the use of 
neurofeedback as an adjunct therapy to physiotherapy141 
or as part of a multimodal intervention143 is a promising 
development for rehabilitation of patients with stroke, 
which has traditionally maintained focus on activating 
limbs without engaging brain activity.

Applications of fMRI-based neurofeedback for reha-
bilitation after stroke are not as well developed, but fMRI 
spatial precision and whole-brain coverage may better 
target the neurophysiological substrate of the injury. For 
instance, fMRI neurofeedback was applied to modulate 
the activity of a spatially distinct region of the brain that 
was not affected by stroke (for example, the ventral pre-
motor cortex) to induce intracortical facilitation in the 
affected M1 (REF. 56) and to directly enhance ipsilesional 
thalamo–cortical connectivity145. Modulation of inter-
hemispheric laterality80,146 by fMRI-based neurofeedback 
is being pursued in the context of stroke, although fur-
ther work is needed to establish the clinical benefits of 
this approach.

Many challenges remain in generating strong and 
well-controlled evidence for the general clinical utility 
of neurofeedback, including the difficulty of identifying 
responders, the scarcity of homogenous patient popu-
lations and the medically oriented efforts to combine 
different approaches to maximize treatment effects that 
are often not properly controlled. All these outstanding 
issues would benefit from more fundamental neuro-
scientific research. Clinical phenotyping may help to 
identify responders, and neurofeedback protocols 
could be designed based on network models of neural 
dysfunction147 (BOX 2) rather than on patient interviews 
and self-reports as in current practice148. Finally, training 
protocols could be tailored to individual patients based 
on predictions of neurofeedback performance from rest-
ing-state activity149, anatomical brain structure150,151 and 
personality traits152.

Conclusions and outlook
Recent neurofeedback research has led to advances in 
the knowledge of neural function by using brain acti-
vation as the independent variable and behaviour and 
thought as dependent variables. Learning brain control 
with neurofeedback is similar to skill acquisition and 
involves the corticostriatal loop with its dopaminergic 
and glutamatergic synaptic organization. The promise 

of neurofeedback as a scientific tool is now beginning 
to be realized. Real-time connectivity and multivariate 
methods enable modulation of patterns of neural activa-
tion, which may better represent the underlying neural 
function than activity in single brain regions. Modulation 
of deep brain structures and neural oscillations (EEG, 
electro corticography and single-cell recording) can also 
be performed using neurofeedback based on electro-
physiological activities of subcortical regions. New evi-
dence suggests that modulation of neural circuitry even 
occurs without conscious awareness of the neurofeedback 
signal. In addition, we now understand more about how 
neurofeedback is regulated, its specificity and some of its 
effects on neuroplasticity. Learned modulation of activ-
ity in specific brain regions, connections and patterns 
can lead to specific behavioural changes. Technological 
developments on the horizon153–157 will accelerate neuro-
feedback experimentation even further. Much remains 
to be investigated, including the integration of the vast 
knowledge of training and learning psychology into neu-
rofeedback protocols (BOXES 3,4), the long-term impact 
of neurofeedback on neuroplasticity and behaviour, and 
its positive and negative side effects. The range of neural 
circuitry that can be modulated in neurofeedback, from 
single cells and connectivity between regions to mul-
tivariate patterns, is unparalleled in neuroscience and 
will continue to provide new ways to understand brain–
behaviour relationships.

From a clinical standpoint, neurofeedback remains 
in early development. There is a need for more place-
bo-controlled clinical trials that address the behavioural 
specificity of the learned regulation. However, ongoing 
large-scale clinical trials may clarify the highly variable 
effects of neurofeedback. Perhaps the best example for 
such a large-scale undertaking in neurofeedback is the 
BRAINTRAIN project that was funded by the European 
Commission. Some future areas of clinical investigation 
involve comparing or combining neurofeedback with 
other interventions, such as pharmacotherapy, neu-
rostimulation and behavioural therapy. The research 
community is still not informed of comparable effect 
sizes, side effects and differential effectiveness for diag-
nostic subcategories. Ultimately, the clinical application 
of neurofeedback will depend on the value that it brings 
to the patient and caregiver, and therefore double-blind 
RCTs of neurofeedback and systematic analyses of its 
cost–effectiveness should be conducted.
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